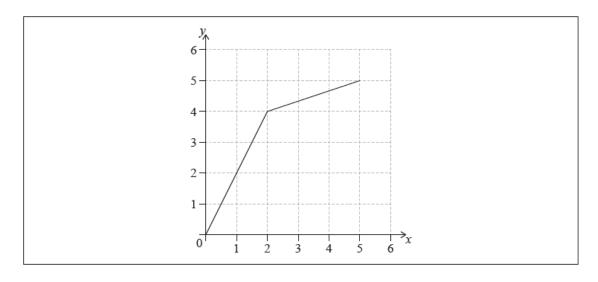
Functions revision [67 marks]

1. [Maximum mark: 7] The graph of the function f is given in the following diagram.

23N.1.AHL.TZ0.2



(a) Write down f(2).

[1]

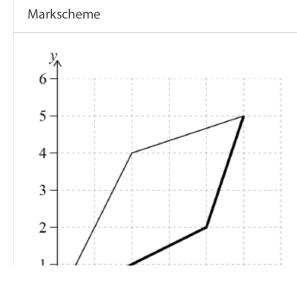
Markscheme

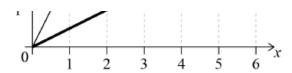
4 A1

[1 mark]

(b) On the axes, sketch $y=f^{-1}(x)$.

[2]





A1A1

Note: Award *A1* for passing through (0, 0) and (4, 2), *A1* for passing through (4, 2) and (5, 5).

[2 marks]

The function g is defined as g(x) = 3x - 1.

(c) Find an expression for $g^{-1}(x)$

[2]

Markscheme

attempt to solve y = 3x - 1 for x **OR** changing variables (M1)

$$\left(g^{-1}(x)
ight) \ = \ rac{x+1}{3}$$

[2 marks]

(d) Find a value of x where $f^{-1}(x) = g^{-1}(x)$.

[2]

Markscheme

sketch of g(x) or $g^{-1}(x)$, algebraic approach (M1)

$$\frac{1}{2}x = \frac{x+1}{3}$$

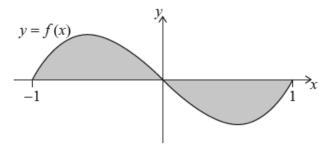
$$(x=) 2$$

[2 marks]

2. [Maximum mark: 7]

23N.1.AHL.TZ0.11

Consider the function $f(x)=x^3-x$, for $-1\leq x\leq 1$. The shaded region, R, is bounded by the graph of y=f(x) and the x-axis.



(a.i) Write down an integral that represents the area of R.

[1]

Markscheme

EITHER

(area of
$$R=$$
) $\int_{-1}^{1}\left|x^{3}-x\right|\,\mathrm{d}\;x$

OR

(area of
$$R=$$
) $2 imes \int_{-1}^0 x^3-x\,\,\mathrm{d}\,x\,$ OR (area of $R=$) $-2 imes \int_0^1 x^3-x\,\,\mathrm{d}\,x\,$

OR

(area of
$$R=$$
) $\int_{-1}^0 x^3-x \ \mathrm{d}\ x-\int_0^1 x^3-x \ \mathrm{d}\ x$

[1 mark]

(a.ii) Find the area of R.

[1]

Markscheme

(area of
$$R=
ceil 0.5$$

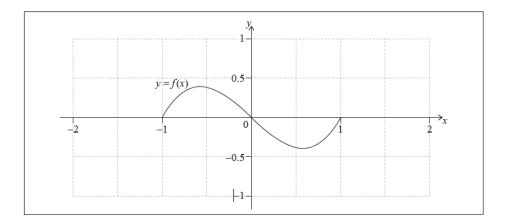
Note: Follow through from part (a)(i) only if answer is greater than zero.

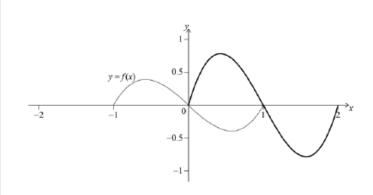
[1 mark]

Another function, g , is defined such that g(x)=2f(x-1) .

A1

(b) On the following set of axes, the graph of y=f(x) has been drawn. On the same set of axes, sketch the graph of y=g(x).





A1A1

Note: Award *A1* for sketch with correct shape on $[0,\ 2]$, *A1* for vertical stretch x2. Condone max/min of g extending to 1/-1.

[2 marks]

The region R from the original graph y=f(x) is rotated through 2π radians about the x-axis to form a solid.

(c) Find the volume of the solid.

Markscheme

attempt to use
$$\pi \int y^2 \; \mathrm{d} \; x$$

volume
$$=\pi\int_{-1}^{1}\left(\mathbf{x}^{3}-x\right)^{2}\,\mathrm{d}\;x$$
 (A1)

[2]

[3]

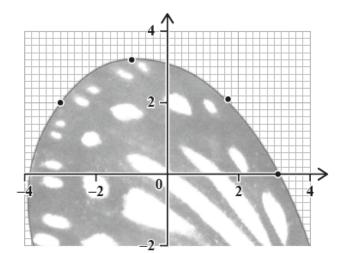
volume
$$=0.\,479$$
 (cubic units) $\left(=0.\,478718\ldots,\,\frac{16\pi}{105}\right)$

[3 marks]

3. [Maximum mark: 5]

22N.1.AHL.TZ0.11

Gloria wants to model the curved edge of a butterfly wing. She inserts a photo of the wing into her graphing software and finds the coordinates of four points on the edge of the wing.



х	У
-3	2
-1	3.2
1.7	2.1
3.1	0

Gloria thinks a cubic curve will be a good model for the butterfly wing.

[Source: Fleur, 2019. photo-1560263816-d704d83cce0f. [image online] Available at: https://unsplash.com/photos/SE2zTdS1MNo [Accessed 8 February 2022]. Source adapted.]

(a) Find the equation of the cubic regression curve for this data.

[2]

Markscheme

$$y=-0.\,00855x^3-0.\,234x^2-0.\,225x+3.\,20$$
 A2 $\left(y=-0.\,00854819\ldots x^3-0.\,234002\ldots x^2-0.\,224884\ldots x+3.\,20056\ldots
ight)$

Note: Award AOA1 for at least two terms correct.

[2 marks]

For the photo of a second butterfly wing, Gloria finds the equation of the regression curve is $y=0.0083x^3-0.075x^2-0.58x+2.2$.

Gloria realizes that her photo of the second butterfly is an enlargement of the life-size butterfly, scale factor 2 and centred on (0, 0).

(b) Find the equation of the cubic curve that models the life-size wing.

[3]

Markscheme

y(2x) (for horizontal stretch)

(A1)

attempt to stretch vertically by factor $\frac{1}{2}$

(M1)

$$y = 0.0332x^3 - 0.15x^2 - 0.58x(+1.1)$$

A1

Note: Award **A0M1A0** for a vertical stretch, factor 2. Although a d value of 1. 1 is preferred, technically this value can be wrong/omitted and the question is still answered (hence it is presented in brackets).

[3 marks]

4. [Maximum mark: 5]

22M.1.AHL.TZ2.10

The function $f(x)=\ln\!\left(rac{1}{x-2}
ight)$ is defined for $x>2,\ x\in\mathbb{R}.$

(a) Find an expression for $f^{-1}(x)$. You are not required to state a domain.

[3]

Markscheme

$$y = \ln\left(\frac{1}{x-2}\right)$$

an attempt to isolate x (or y if switched) (M1)

$$e^y = \frac{1}{x-2}$$

$$x-2=\mathrm{e}^{-y}$$

$$x = e^{-y} + 2$$

switching x and y (seen anywhere) M1

$$f^{-1}ig(xig)=\mathrm{e}^{-x}+2$$
 A1

[3 marks]

(b) Solve $f(x) = f^{-1}(x)$.

[2]

Markscheme

sketch of f(x) and $f^{-1}(x)$ (M1)

$$x=2.12 \ (2.12002\ldots)$$
 A1

[2 marks]

5. [Maximum mark: 18] ${\it Consider the curve} \, y = \sqrt{x}.$

22M.2.AHL.TZ1.6

(a.i) Find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
.

[2]

Markscheme

$$y=x^{rac{1}{2}}$$
 (M1)

$$rac{\mathrm{d}y}{\mathrm{d}x} = rac{1}{2}x^{-rac{1}{2}}$$
 A1

[2 marks]

(a.ii) Hence show that the equation of the tangent to the curve at the point $(0.\,16,\,0.\,4)$ is $y=1.\,25x+0.\,2$.

[2]

= 1.25

EITHER

$$y-0.4=1.25(x-0.16)$$
 M1

OR

$$0.4 = 1.25(0.16) + b$$
 M1

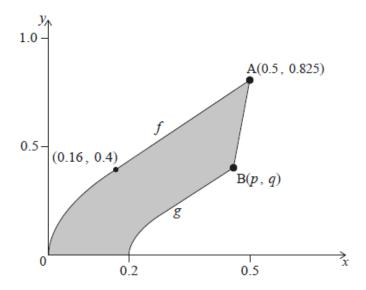
Note: Do not allow working backwards from the given answer.

THEN

hence y=1.25x+0.2

[2 marks]

The shape of a piece of metal can be modelled by the region bounded by the functions f,g, the x-axis and the line segment [AB], as shown in the following diagram. The units on the x and y-axes are measured in metres.



The piecewise function f is defined by

$$f(x) = egin{cases} \sqrt{x} & 0 \leq x \leq 0.16 \ 1.25x + 0.2 & 0.16 < x \leq 0.5 \end{cases}$$

The graph of g is obtained from the graph of f by:

- a stretch scale factor of $\frac{1}{2}$ in the x direction,
- followed by a stretch scale factor $\frac{1}{2}$ in the y direction,
- followed by a translation of 0.2 units to the right.

Point A lies on the graph of f and has coordinates $(0.5,\ 0.825)$. Point B is the image of A under the given transformations and has coordinates $(p,\ q)$.

(b) Find the value of p and the value of q.

Markscheme

$$p=0.45,\;\;q=0.4125\; ext{(or}\,0.413)\; ext{(accept "} ig(0.45,\;0.4125ig)$$
 ")

[2 marks]

The piecewise function g is given by

$$g(x) = egin{cases} h(x) & 0.2 \leq x \leq a \ 1.25x + b & a < x \leq p \end{cases}$$

(c.i) Find an expression for h(x).

[2]

$$(h(x)=)$$
 $rac{1}{2}\sqrt{2(x-0.2)}$ Az

Note: Award *A1* if only two correct transformations are seen.

[2 marks]

(c.ii) Find the value of a.

[1]

Markscheme

$$(a =) 0.28$$
 A1

[1 mark]

(c.iii) Find the value of b.

[2]

Markscheme

EITHER

Correct substitution of their part (b) (or $(0.28,\ 0.2)$) into the given expression (M1)

OR

$$rac{1}{2}(1.25 imes2(x-0.2)+0.2)$$
 (M1)

Note: Award $\emph{M1}$ for transforming the equivalent expression for f correctly.

THEN

$$(b=) -0.15$$
 A1

[2 marks]

(d.i) Find the area enclosed by y=f(x) , the x-axis and the line $x=0.\,5$.

[3]

Markscheme

recognizing need to add two integrals (M1)

$$\int_0^{0.16} \sqrt{x} \; \mathrm{d} \; x + \int_{0.16}^{0.5} (1.25x + 0.2) \; \mathrm{d} \; x$$
 (A1)

Note: The second integral could be replaced by the formula for the area of a trapezoid $\frac{1}{2} imes 0.34 (0.4+0.825)$.

$$0.251\,\mathrm{m}^2~(0.250916\ldots)$$
 A1

[3 marks]

The area enclosed by y=g(x), the x-axis and the line x=p is $0.0627292\,\mathrm{m}^2$ correct to six significant figures.

(d.ii) Find the area of the shaded region on the diagram.

[4]

Markscheme

EITHER

area of a trapezoid $rac{1}{2} imes 0.05 (0.4125 + 0.825) = 0.0309375$ (M1)(A1)

OR

$$\int_{0.45}^{0.5} (8.25x - 3.3) \; \mathrm{d} \; x = 0.0309375$$
 (M1)(A1)

Note: If the rounded answer of 0.413 from part (b) is used, the integral is $\int_{0.45}^{0.5} (8.24x-3.295) \; \mathrm{d} \; x=0.03095$ which would be awarded (M1)(A1).

THEN

shaded area = 0.250916... - 0.0627292 - 0.0309375 (M1)

Note: Award *(M1)* for the subtraction of both $0.0627292\ldots$ and their area for the trapezoid from their answer to (a)(i).

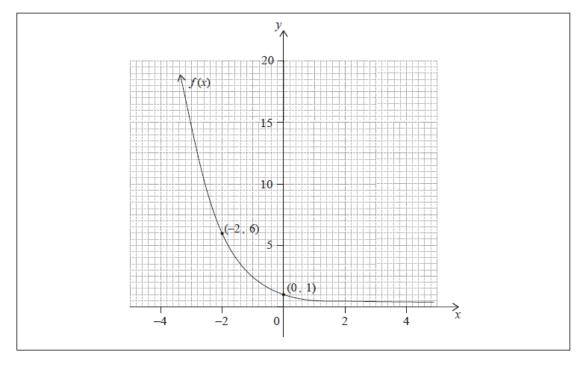
$$=0.157 \mathrm{m}^2 \ (0.15725)$$
 At

[4 marks]

6. [Maximum mark: 4]

21N.1.AHL.TZ0.10

The graph of y=f(x) is given on the following set of axes. The graph passes through the points $(-2,\ 6)$ and $(0,\ 1)$, and has a horizontal asymptote at y=0.



Let
$$g(x) = 2f(x-2) + 4$$
.

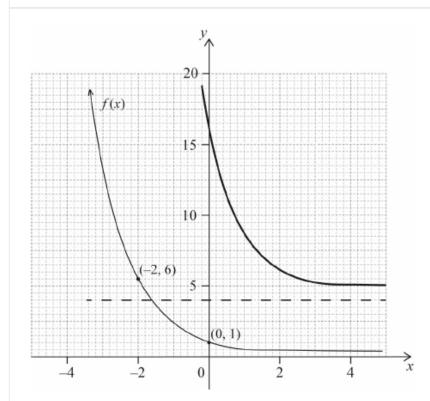
(a) Find g(0).

g(0)=16 M1A1

[2 marks]

(b) On the same set of axes draw the graph of y=g(x) , showing any intercepts and asymptotes.

[2]



y-asymptote (y=4)

concave up decreasing curve and passing through $(0,\ 16)$

[2 marks]

7. [Maximum mark: 7]

21M.1.AHL.TZ1.17

The graph of the function $f(x)=\ln x$ is translated by $\binom{a}{b}$ so that it then passes through the points $(0,\ 1)$ and $\left(\mathrm{e}^3,\ 1+\ln 2\right)$.

Find the value of a and the value of b.

[7]

Markscheme

new function is
$$f(x-a)+b(=\ln(x-a)+b)$$
 (M1)

$$f(0) = \ln(-a) + b = 1$$
 A1

$$f(\mathrm{e}^3) = \ln(\mathrm{e}^3 - a) + b = 1 + \ln 2$$
 At

$$\ln(-a) = \ln(\mathrm{e}^3 - a) - \ln 2 \quad \text{(M1)}$$

$$\ln(-a) = \ln\!\left(rac{\mathrm{e}^3 - a}{2}
ight)$$

$$-a = \frac{e^3 - a}{2}$$

$$-2a = e^3 - a$$

$$a=-{
m e}^3 \ (=-20.\,0855\ldots)$$
 A1

$$b=1-\ln{
m e}^3=1-3=-2$$
 (M1)A1

[7 marks]

8. [Maximum mark: 7]

21M.1.AHL.TZ2.2

A function is defined by $f(x)=2-rac{12}{x+5}$ for $-7\leq x\leq 7,\ x
eq -5$.

(a) Find the range of f.

[3]

Markscheme

$$(f(-7)=) \ 8 \ {
m and} \ (f(7)=) \ 1$$
 (A1)

range is
$$f(x) \leq 1, \; f(x) \geq 8$$
 A1A1

Note: Award at most A1A1A0 if strict inequalities are used.

[3 marks]

(b) Find an expression for the inverse function $f^{-1}(x)$. The domain is not required.

Markscheme

interchanging x, y at any stage (A1)

$$y = 2 - \frac{12}{x+5}$$

$$\frac{12}{x+5} = 2 - y$$

$$rac{12}{2-y} = x + 5$$
 (A1)

$$\frac{12}{2-y} - 5 = x$$

$$\left(\ f^{-1}(x) =
ight) rac{12}{2-x} - 5 \ \left(= rac{2+5x}{2-x}
ight)$$
 At

[3 marks]

(c) Write down the range of $f^{-1}(x)$.

[1]

[3]

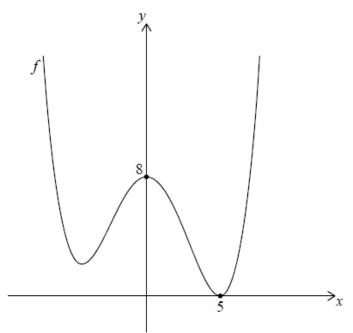
Markscheme

range is
$$-7 \leq f^{-1}(x) \leq 7, \;\; f^{-1}(x) \neq -5$$

[1 mark]

9. [Maximum mark: 7] 19M.1.SL.TZ2.S_4

The following diagram shows part of the graph of f with x-intercept (5, 0) and y-intercept (0, 8).



(a.i) Find the y-intercept of the graph of $f\left(x
ight)+3$.

Markscheme

y-intercept is 11 (accept (0, 11)) A1 N1

[1 mark]

(a.ii) Find the y-intercept of the graph of $f\left(4x\right)$.

[1]

[2]

Markscheme

valid approach (M1)

eg $\,f\left(4 imes0
ight)=f\left(0
ight)$, recognizing stretch of $rac{1}{4}$ in x-direction

y-intercept is 8 (accept (0, 8)) A1 N2

[2 marks]

(b) Find the x-intercept of the graph of $f\left(2x\right)$.

[2]

Markscheme

x-intercept is $rac{5}{2}~(=2.5)~$ (accept $\left(rac{5}{2},~0
ight)$ or (2.5,0)) $\,$ A2 N2 $\,$

(c) Describe the transformation $f\left(x+1\right)$.

[2]

Markscheme

correct name, correct magnitude and direction A1A1 N2

eg name: translation, (horizontal) shift (do not accept move)

eg magnitude and direction: 1 unit to the left, $\binom{-1}{0}$, horizontal by -1

[2 marks]

© International Baccalaureate Organization, 2025