Logarithms - revision [81 marks]

1. [Maximum mark: 6] EXN.1.SL.TZ0.5 The pH of a solution is given by the formula $pH = -\log_{10} C$ where C is the hydrogen ion concentration in a solution, measured in moles per litre (Ml^{-1}).

(a)	Find the pH value for a solution in which the hydrogen ion		
	concentration is $5.2 imes 10^{-8}$.	[2]	
(b.i)	Write an expression for C in terms of $pH.$	[2]	
(b.ii)	Find the hydrogen ion concentration in a solution with $pH~4.~2$. Give your answer in the form $a imes 10k$ where		
	$1 \leq a < 10$ and k is an integer.	[2]	

2. [Maximum mark: 7] EXN.1.AHL.TZ0.12 It is believed that the power P of a signal at a point d km from an antenna is inversely proportional to d^n where $n \in \mathbb{Z}^+$.

The value of P is recorded at distances of $1\,{\rm m}$ to $5\,{\rm m}$ and the values of $\log_{10}\,d$ and $\log_{10}\,P$ are plotted on the graph below.

(a) Explain why this graph indicates that P is inversely proportional to d^n .

The values of $\log_{10}\,d$ and $\log_{10}\,P$ are shown in the table below.

$\log_{10} d$	0	0.301	0.477	0.602	0.699
$\log_{10} P$	-0.127	-0.740	-1.10	-1.36	-1.55

- (b) Find the equation of the least squares regression line of $\log_{10} P$ against $\log_{10} d$. [2] (c.i) Use your answer to part (b) to write down the value of n to the nearest integer. [1]
- (c.ii) Find an expression for P in terms of d. [2]

[2]

It is believed that two variables, v and w are related by the equation $v = kw^n$, where $k, n \in \mathbb{R}$. Experimental values of v and w are obtained. A graph of $\ln v$ against $\ln w$ shows a straight line passing through (-1.7, 4.3) and (7.1, 17.5).

Find the value of k and of n.

[Maximum mark: 10] EXM.1.AHL.TZ0.15 Adesh wants to model the cooling of a metal rod. He heats the rod and records its temperature as it cools.

Time, t (seconds)	0	30	60	90	120	150
Temperature, T (°C)	75.6	62.2	53.3	47.4	42.3	38.5

He believes the temperature can be modeled by $T\left(t
ight)=a\mathrm{e}^{bt}+25$, where $a,\,b\in\mathbb{R}.$

- (a) Show that $\ln\left(T-25
 ight)=bt+\ln a.$ [2]
- (b) Find the equation of the regression line of $\ln{(T-25)}$ on t. [3]

Hence

4.

- (c.i) find the value of a and of b. [3]
- (c.ii) predict the temperature of the metal rod after 3 minutes. [2]

5. [Maximum mark: 5] EXM.1.AHL.TZ0.13 It is believed that two variables, m and p are related. Experimental values of mand p are obtained. A graph of $\ln m$ against p shows a straight line passing through (2.1, 7.3) and (5.6, 2.4).

[7]

_ . _

(a)	Find the equation of the straight line, giving your answer in the form $\ln m = ap + b$, where $a, \ b \in \mathbb{R}.$	[3]
ŀ	lence	, find	
(b.i)	a formula for m in terms of p .	[1]
(b.ii)	the value of m when $p=0.$	[1]
[ר f	Maxir The pł Tormu	num mark: 7] Hscale is a measure of the acidity of a solution. Its value is given by la	24M.1.SL.TZ2.7 the
ķ	$_{ m H}=$	$-\log_{10} [{ m H^+}]$,	
v r	vhere noles	$\left[H^{+} ight]$ is the concentration of hydrogen ions in the solution (measper litre).	ured in
(a)	Calculate the pH value if the concentration of hydrogen ions is $0.0003.$	[2]
٦	The pł	f of milk is 6.6 .	
(b)	Calculate the concentration of hydrogen ions in milk.	[2]
٦	The st	rength of an acid is measured by its concentration of hydrogen ion	S.
ŀ	A lemo	on has a pH value of 2 and a tomato has a pH value of $4.5.$	
(C)	Calculate how many times stronger the acid in a lemon is when compared to the acid in a tomato.	[3]

7. [Maximum mark: 7]

6.

24M.1.AHL.TZ1.9

(a) Find
$$\int \frac{8}{2x+3} dx$$
. [3]

(b) Hence find the exact area between the curve $y = \frac{8}{2x+3}$, the x-axis and the lines x = 0 and x = 6. Give your answer in the form $a \ln b$, where $a, b \in \mathbb{N}$. [4]

8. [Maximum mark: 7]

23N.1.AHL.TZ0.10

The decay of a chemical isotope over five years is recorded in **Table 1**. The mass of the chemical M is measured to the nearest gram at the beginning of each year t of the experiment.

Table 1

Time <i>t</i> (years)	1	2	3	4	5
Mass M (grams)	1000	660	517	435	381

It is believed that the decay of the isotope can be modelled by an equation of the form $M=a imes t^b.$

(a) Use power regression on your graphic display calculator to find the value of *a* and the value of *b*.

[2]

The values of t and M can be transformed such that $x = \ln t$ and $y = \ln M$. **Table 2** shows data for x and y to three decimal places.

Table 2

x	0	0.693	1.099	1.386	1.609
у	6.908	6.492	6.248	6.075	5.943

(b) Find the linear regression equation of y on x, in the form y = cx + d. Give the values of c and d to three decimal

		places.	[2]
	(c)	Hence, show that this linear regression is equivalent to the power regression found in part (a).	[3]
9.	[Maxin "Passw The hig The rel	num mark: 7] 23 vord entropy" is a measure of the predictability of a computer passwo gher the entropy, the more difficult it is to guess the password. lationship between the password entropy, p , (measured in bits) and the	rd. ne
	numbe 0. 30	er of guesses, G , required to decode the password is given by $1p = \log_{10} G.$	
	(a)	Calculate the value of p for a password that takes 5000 guesses to decode.	[2]
	(b)	Write down G as a function of p .	[1]
	(c)	Find the number of guesses required to decode a password that has an entropy of 28 bits. Write your answer in the form $a imes 10^k$, where $1\leq a<10,k\in\mathbb{Z}.$	[3]
	Therei	is a point on the graph of the function $G(p)$ with coordinates $(0,\ 1$).
	(d)	Explain what these coordinate values mean in the context of computer passwords.	[1]
10.	[Maxir Petra e log gra	num mark: 6] 23M. examines two quantities, x and y , and plots data points on a log- aph.	1.AHL.TZ1.14

She observes that on this graph the data points follow a perfect straight line. Given that the line passes through the points (2, 13.1951) and (4, 34.822), find the equation of the relationship connecting x and y. Your final answer should not include logarithms.

11.[Maximum mark: 6]22N.1.SL.TZ0.10Stars are classified by their brightness. The brightest stars in the sky have a
magnitude of 1. The magnitude, m, of another star can be modelled as a
function of its brightness, b, relative to a star of magnitude 1, as shown by the

 $m = 1 - 2.5 \log_{10}(b)$

following equation.

The star called Acubens has a brightness of $0.\,0525$.

(a) Find the magnitude of Acubens.

[2]

Ceres has a magnitude of 7 and is the least bright star visible without magnification.

[6]

(b)	Find the brightness of Ceres.	[2]
(c)	Find how many times brighter Acubens is compared to Ceres.	[2]

12. [Maximum mark: 6]

22N.1.AHL.TZ0.13

Gen is investigating the relationship between two sets of data, labelled P and Q, that she collected. She created a scatter plot with P on the x-axis and $\log_{10} Q$ on the y-axis. Gen noticed that the points had a strong linear correlation, so she drew a line of best fit, as shown in the diagram. The line passes through the points (0, -1.3) and (6, 14.9).

(a) Find an equation for Q in terms of P.

[3]

Gen also investigates the relationship between the same data, Q, and some new data, R. She believes that the data can be modelled by $Q=a\,\ln R+b$ and she decides to create a scatter plot to verify her belief.

(b)	State what expression Gen should plot on each axis to verify her				
	belief.	[1]			
The sc $b=1$	atter plot has a linear relationship and Gen finds $a=4.3$ and $12.1.$				

(c) Find an equation for P in terms of R. [2]

© International Baccalaureate Organization, 2025