Matrices revision 2 [77 marks]

1. [Maximum mark: 12]EXM.2.AHL.TZ0.15The matrix A is defined by $A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$.(a) Describe fully the geometrical transformation represented by A.[5]Pentagon, P, which has an area of 7 cm², is transformed by A.[5](b) Find the area of the image of P.[2]

The matrix B is defined by $B=rac{1}{2}egin{pmatrix} 3\sqrt{3} & 3 \ -2 & 2\sqrt{3} \end{pmatrix}$.

B represents the combined effect of the transformation represented by a matrix X, followed by the transformation represented by A.

- (c) Find the matrix X. [3]
- (d) Describe fully the geometrical transformation represented by X. [2]
- 2. [Maximum mark: 16] EXM.2.AHL.TZ0.7 Let S_n be the sum of the first n terms of the arithmetic series 2 + 4 + 6 +
 - (a.i) Find S_4 . [1]
 - (a.ii) Find S_{100} . [3]

Let
$$M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
.

(b.i) Find M^2 . [2]

(b.ii) Show that
$$M^3 = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix}$$
. [3]

It may now be assumed that $M^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix}$, for $n \ge 4$. The sum T_n is defined by

$$T_n = M^1 + M^2 + M^3 + \dots + M^n.$$

- (c.i) Write down M^4 . [1]
- (c.ii) Find **I**₄. [3]

(d) Using your results from part (a) (ii), find
$$T_{100}$$
. [3]

3. [Maximum mark: 16] The matrices A and B are defined by $A = \begin{pmatrix} 3 & -2 \\ 2 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

(a) Describe fully the geometrical transformation represented by B. [2]

Triangle X is mapped onto triangle Y by the transformation represented by AB. The coordinates of triangle Y are (0, 0), (-30, -20) and (-16, 32).

(b)	Find the coordinates of triangle X.	[5]
(c.i)	Find the area of triangle X.	[2]
(c.ii)	Hence find the area of triangle Y.	[3]
(d)	Matrix A represents a combination of transformations:	
	A stretch, with scale factor 3 and y-axis invariant;	
	Followed by a stretch, with scale factor 4 and x-axis invariant;	

Followed by a transformation represented by matrix C.

Find matrix C.

4. [Maximum mark: 11]
Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$. EXM.2.AHL.TZ0.21

Given that $X = B - A^{-1}$ and $Y = B^{-1} - A$,

- (a.i) find *X* and *Y*. [2]
- (a.ii) does $X^{-1} + Y^{-1}$ have an inverse? Justify your conclusion. [3]

You are told that
$$A^n=egin{pmatrix} 1&n&rac{n(n+1)}{2}\ 0&1&n\ 0&0&1 \end{pmatrix}$$
 , for $n\in\mathbb{Z}^+.$

Given that
$$\left(A^n
ight)^{-1}=egin{pmatrix}1&x&y\0&1&x\0&0&1\end{pmatrix}$$
 , for $n\in\mathbb{Z}^+$,

- (b.i) find x and y in terms of n. [5]
- (b.ii) and hence find an expression for $A^n + (A^n)^{-1}$. [1]

5. [Maximum mark: 22] EXM.2.AHL.TZ0.23
Let
$$A = \begin{pmatrix} 3 & 1 \\ 4 & 3 \end{pmatrix}$$
.

(a)	Find the values of λ for which the matrix (A $-\lambda$ I) is singular.	[5]
Let A ²	$+ m A + n I = 0$ where $m, n \in \mathbb{Z}$ and $o = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.	
(b.i)	Find the value of m and of n .	[5]
(b.ii)	Hence show that $I = \frac{1}{5} A (6I - A)$.	[4]
(b.iii)	Use the result from part (b) (ii) to explain why A is non-singular.	[3]

(c) Use the values from **part (b) (i)** to express A^4 in the form pA+qIwhere $p,q \in \mathbb{Z}$. [5]

© International Baccalaureate Organization, 2025