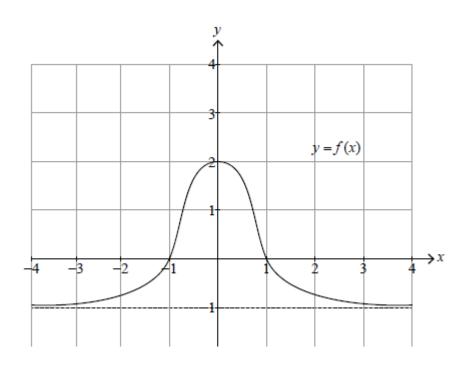
Revision set (Paper 1) [297 marks]

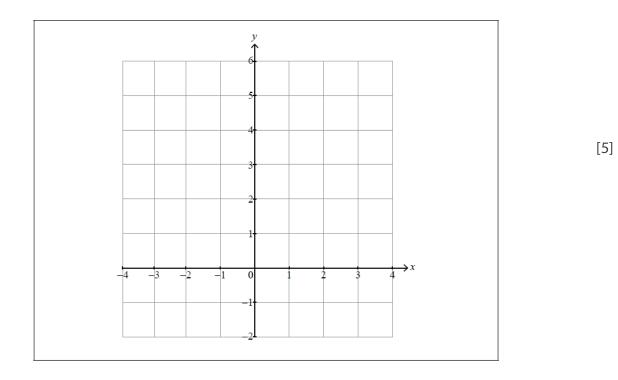
1. [Maximum mark: 5]

SPM.1.AHL.TZ0.4

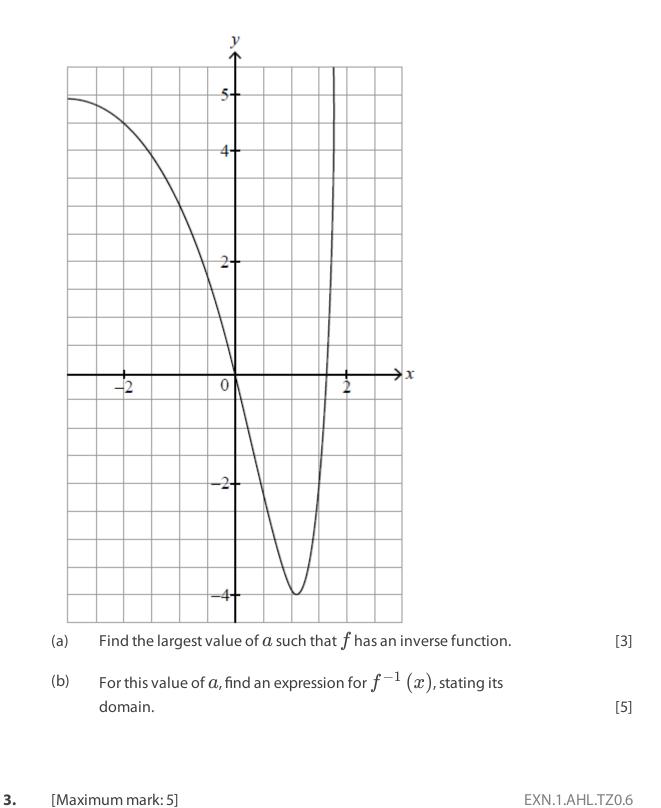
The following diagram shows the graph of y = f(x). The graph has a horizontal asymptote at y = -1. The graph crosses the x-axis at x = -1 and x = 1, and the y-axis at y = 2.



On the following set of axes, sketch the graph of $y = \left[f(x)\right]^2 + 1$, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima.

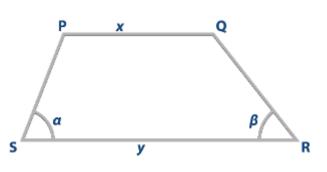


2. [Maximum mark: 8] SPM.1.AHL.TZ0.9 The function f is defined by $f(x)={
m e}^{2x}-6{
m e}^x+5,\ x\in\mathbb{R},\ x\leqslant a.$ The graph of y=f(x) is shown in the following diagram.



[Maximum mark: 5] EXN.1.AHL.TZ0.6
Use l'Hôpital's rule to determine the value of
$$\lim_{x \to 0} \left(\frac{2x \cos(x^2)}{5 \tan x} \right)$$
. [5]

4. [Maximum mark: 5] Consider quadrilateral PQRS where [PQ] is parallel to [SR].



In PQRS , $\mathrm{PQ}=x$, $\mathrm{SR}=y$, $\mathrm{R\widehat{S}P}=lpha$ and $\mathrm{Q\widehat{R}S}=eta$.

Find an expression for PS in terms of $x,\,y,\,\sineta$ and $\sin\,(lpha+eta).$

[5]

EXN.1.AHL.TZ0.11

- 5. [Maximum mark: 21] A function f is defined by $f(x)=rac{3}{x^2+2}, \; x\in \mathbb{R}.$
 - (a) Sketch the curve y = f(x), clearly indicating any asymptotes with their equations and stating the coordinates of any points of intersection with the axes. [4]

The region R is bounded by the curve y=f(x) , the x -axis and the lines x=0 and $x=\sqrt{6}$. Let A be the area of R.

(b) Show that
$$A = \frac{\sqrt{2\pi}}{2}$$
. [4]

The line x = k divides R into two regions of equal area.

(c) Find the value of k. [4]

Let m be the gradient of a tangent to the curve y = f(x).

(d) Show that
$$m = -\frac{6x}{(x^2+2)^2}$$
. [2]

(e) Show that the maximum value of
$$m$$
 is $\frac{27}{32}\sqrt{\frac{2}{3}}$. [7]

6. [Maximum mark: 8] EXM.1.AHL.TZ0.1 Let $f(x) = \frac{1}{1-x^2}$ for -1 < x < 1. Use partial fractions to find $\int f(x) \ dx.$ [8]

7. [Maximum mark: 9] EXM.1.AHL.TZ0.6 Let $f\left(x
ight)=rac{x^2-10x+5}{x+1},\ x\in\mathbb{R},\ x
eq-1.$

(a)	Find the co-ordinates of all stationary points.	[4]
(b)	Write down the equation of the vertical asymptote.	[1]
(c)	With justification, state if each stationary point is a minimum, maximum or horizontal point of inflection.	[4]

8. [Maximum mark: 11] EXM.1.AHL.TZ0.2
Consider the integral
$$\int_{1}^{t} \frac{-1}{x+x^2} dx$$
 for $t > 1$.

(b) Express the function
$$f\left(x
ight)=rac{-1}{x+x^2}$$
 in partial fractions. [6]

(c) Use parts (a) and (b) to show that
$$\ln{(1+t)} - \ln{t} < \ln{2}.$$
 [4]

9. [Maximum mark: 8] E	EXM.1.AHL.TZ0.4
Let $f\left(x ight)=rac{2x+6}{x^2+6x+10},x\in\mathbb{R}.$	

(a) Show that
$$f\left(x
ight)$$
 has no vertical asymptotes. [3]

(c) Find the exact value of
$$\int_{0}^{1} f(x) dx$$
, giving the answer in the form $\ln q, q \in \mathbb{Q}$. [3]

10. [Maximum mark: 9] EXM.1.AHL.TZ0.5 Let
$$f\left(x
ight)=rac{2x^2-5x-12}{x+2},\ x\in\mathbb{R},\ x
eq-2.$$

(a)Find all the intercepts of the graph of
$$f(x)$$
 with both the x
and y axes.[4](b)Write down the equation of the vertical asymptote.[1](c)As $x \to \pm \infty$ the graph of $f(x)$ approaches an oblique
straight line asymptote.[1]Divide $2x^2 - 5x - 12$ by $x + 2$ to find the equation of this
asymptote.[4]

11. [Maximum mark: 5]24M.1.AHL.TZ1.2It is given that $\log_{10} a = \frac{1}{3}$, where a > 0.

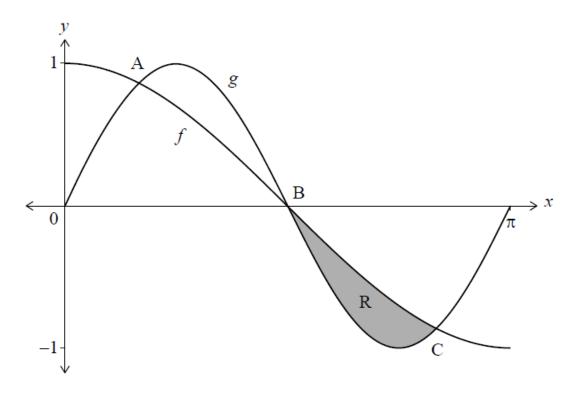
Find the value of

(a)
$$\log_{10}\left(\frac{1}{a}\right);$$
 [2]

(b)
$$\log_{1000} a.$$
 [3]

12. [Maximum mark: 7] 24M.1.AHL.TZ1.4 Consider the functions $f(x)=\cos x$ and $g(x)=\sin 2x$, where $0\leq x\leq \pi$.

The graph of f intersects the graph of g at the point A, the point $B\left(\frac{\pi}{2},0\right)$ and the point C as shown on the following diagram.



(a) Find the x-coordinate of point A and the x-coordinate of point C. [3]

The shaded region ${\bf R}$ is enclosed by the graph of f and the graph of g between the points ${\bf B}$ and ${\bf C}.$

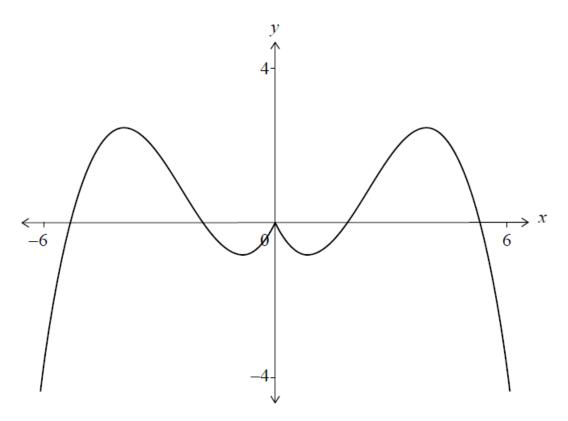
 ${\boldsymbol{S}}_n$ is the sum of the first n terms of the sequence.

13.

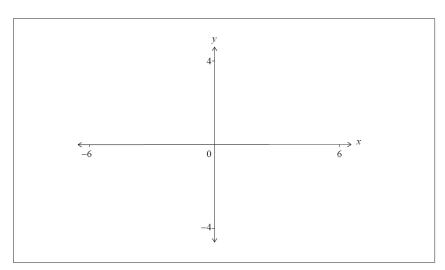
(a) Find an expression for
$$S_n$$
 in the form $rac{a^n-1}{b}$, where $a, \; b \in \mathbb{Z}^+.$ [1]

(b) Hence, show that
$$S_1+S_2+S_3+\ldots+S_n=rac{10(10^n-1)-9n}{81}.$$
 [4]

14. [Maximum mark: 6] 24M.1.AHL.TZ1.9 The graph of y=f(|x|) for $-6\leq x\leq 6$ is shown in the following diagram.

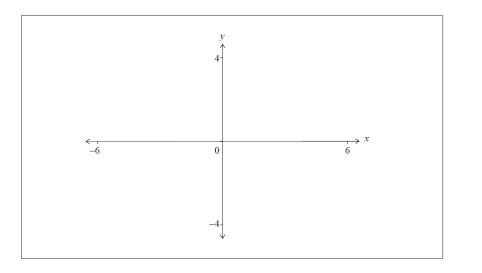


(a) On the following axes, sketch the graph of y=|f(|x|)| for $-6\leq x\leq 6.$



It is given that f is an odd function.

(b) On the following axes, sketch the graph of y=f(x) for $-6\leq x\leq 6.$



It is also given that $\int_0^4 f(|x|) \mathrm{~d~} x = 1.6.$

(c) Write down the value of

(c.i)
$$\int_{-4}^{0} f(x) dx;$$
 [1]

[2]

[2]

(c.ii)
$$\int_{-4}^{4} (f(|x|) + f(x)) \mathrm{d} x.$$
 [1]

- 15. [Maximum mark: 16] 24M.1.AHL.TZ1.10 Consider the function $f(x)=rac{4x+2}{x-2},\ x
 eq 2.$
 - (a) Sketch the graph of y = f(x). On your sketch, indicate the values of any axis intercepts and label any asymptotes with their equations. [5]

[1]

(b) Write down the range of f.

Consider the function $g(x) = x^2 + bx + c$. The graph of g has an axis of symmetry at x = 2.

The two roots of g(x)=0 are $-rac{1}{2}$ and p, where $p\in\mathbb{Q}.$

(c) Show that
$$p = \frac{9}{2}$$
. [1]

(d) Find the value of b and the value of c. [3]

(e) Find the y-coordinate of the vertex of the graph of y = g(x). [2]

- (f) Find the product of the solutions of the equation f(x) = g(x). [4]
- 16. [Maximum mark: 17] 24M.1.AHL.TZ1.11 Consider the polynomial $P(x) = 3x^3 + 5x^2 + x - 1.$
 - (a) Show that (x+1) is a factor of P(x). [2]
 - (b) Hence, express P(x) as a product of three linear factors. [3] Now consider the polynomial Q(x)=(x+1)(2x+1).

(c) Express
$$rac{1}{Q(x)}$$
 in the form $rac{A}{x+1}+rac{B}{2x+1}$, where $A,\ B\in\mathbb{Z}.$ [3]

(d) Hence, or otherwise, show that

$$\frac{1}{(x+1)Q(x)} = \frac{4}{2x+1} - \frac{2}{x+1} - \frac{1}{(x+1)^2}.$$
[2]

(e) Hence, find
$$\int \frac{1}{(x+1)^2(2x+1)} \, \mathrm{d} x.$$
 [4]

Consider the function defined by $f(x)=rac{P(x)}{(x+1)Q(x)}$, where $x
eq-1,\;x
eq-rac{1}{2}.$

(f) Find

(f.i)
$$\lim_{x \to -1} f(x);$$
 [2]

(f.ii)
$$\lim_{x
ightarrow\infty}f(x).$$
 [1]

- **17.** [Maximum mark: 4]
Solve $\tan (2x 5^{\circ}) = 1$ for $0^{\circ} \le x \le 180^{\circ}$.24M.1.AHL.TZ2.1
[4]
- 18. [Maximum mark: 7] 24M.1.AHL.TZ2.7 A function g(x) is defined by $g(x)=2x^3-7x^2+dx-e$, where $d,\ e\in\mathbb{R}.$
 - $lpha,\ eta$ and γ are the three roots of the equation g(x)=0 where $lpha,\ eta,\ \gamma\in\mathbb{R}.$
 - (a) Write down the value of $\alpha + \beta + \gamma$. [1]

A function h(z) is defined by $h(z)=2z^5-11z^4+rz^3+sz^2+tz-20$, where $r,\ s,\ t\in\mathbb{R}.$

 $lpha,\ eta$ and γ are also roots of the equation h(z)=0.

It is given that h(z) = 0 is satisfied by the complex number $z = p + 3\mathbf{i}$. (b) Show that p = 1.

It is now given that $hig(rac{1}{2}ig)=0$, and $lpha,\ eta\in\mathbb{Z}^+,\ lpha<eta$ and $\gamma\in\mathbb{Q}.$

(c.i) Find the value of the product $\alpha\beta$. [2]

[3]

- (c.ii) Write down the value of α and the value of β . [1]
- **19.** [Maximum mark: 6]24M.1.AHL.TZ2.8Use l'Hôpital's rule to find $\lim_{x \to 0} \frac{\sec^4 x \cos^2 x}{x^4 x^2}$.[6]
- 20. [Maximum mark: 16] 24M.1.AHL.TZ2.10 Consider the arithmetic sequence $a, \ p, \ q \dots$, where $a, \ p, \ q \neq 0$.
 - (a) Show that 2p q = a. [2]

Consider the geometric sequence $a,\ s,\ t\ldots,$ where $a,\ s,\ t
eq 0.$

(b) Show that $s^2 = at$. [2]

The first term of both sequences is *a*.

It is given that q = t = 1.

(c) Show that $p > \frac{1}{2}$. [2]

Consider the case where $a=9,\ s>0$ and q=t=1.

(d) Write down the first four terms of the

(d.i)	arithmetic sequence;				[2]
(d.ii)	geometric sequence.				[2]

The arithmetic and the geometric sequence are used to form a new arithmetic sequence u_n .

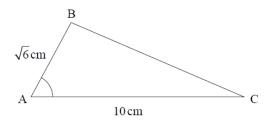
The first three terms of u_n are $u_1=9+\ln 9,\;u_2=5+\ln 3,$ and $u_3=1+\ln 1.$

(e.i) Find the common difference of the new sequence in terms of
$$\ln\,3.$$
 [3]

(e.ii) Show that
$$\sum_{i=1}^{10} = -90 - 25 \ln 3.$$
 [3]

21. [Maximum mark: 6] 23N.1.AHL.TZ1.4 In the following triangle ABC, $AB = \sqrt{6} \ cm$, $AC = 10 \ cm$ and $\cos B\widehat{A}C = \frac{1}{5}$.

diagram not to scale



Find the area of triangle ABC.

 $z^2+{
m i} z=-p+25{
m i}$, where $p,\;q\;\in\mathbb{R}.$

[6]

22. [Maximum mark: 5] It is given that $z=5+q{
m i}$ satisfies the equation

23N.1.AHL.TZ1.7

Find the value of p and the value of q.

23. [Maximum mark: 9] 23N.1.AHL.TZ1.8

(a) Find
$$\int x (\ln x)^2 dx$$
 [6]

- (b) Hence, show that $\int_{1}^{4} x(\ln x)^{2} dx = 32(\ln 2)^{2} - 16 \ln 2 + \frac{15}{4}.$ [3]
- 24. [Maximum mark: 8] 23N.1.AHL.TZ1.9 Consider the function $f(x)=rac{\sin^2{(kx)}}{x^2}$, where x
 eq 0 and $k\in\mathbb{R}^+$.
 - (a) Show that f is an even function. [2] (b) Given that $\lim_{x \to 0} f(x) = 16$ for d the angles of h

(b) Given that
$$\lim_{x \to 0} f(x) = 10$$
, find the value of k . [6]

25. [Maximum mark: 15] 23N.1.AHL.TZ1.10 The functions f and g are defined by $f(x) = \ln (2x - 9)$, where $x > \frac{9}{2}$

$$g(x)=2\,\ln x-\ln d$$
 , where $x>0,\;d\in \mathbb{R}^+$,

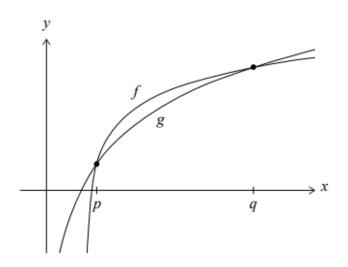
(a) State the equation of the vertical asymptote to the graph of y = g(x). [1]

The graphs of y=f(x) and y=g(x) intersect at two distinct points.

(b.i) Show that, at the points of intersection, $x^2 - 2dx + 9d = 0.$

- (b.ii) Hence show that $d^2 9d > 0.$ [3]
- (b.iii) Find the range of possible values of d.

The following diagram shows part of the graphs of y=f(x) and y=g(x).



The graphs intersect at x = p and x = q, where p < q.

- (c) In the case where d=10. find the value of q-p. Express your answer in the form of $a\sqrt{b}$, where, $a,\ b\in\mathbb{Z}^+$. [5]
- **26.** [Maximum mark: 6]23M.1.AHL.TZ1.3Solve $\cos 2x = \sin x$, where $-\pi \le x \le \pi$.[6]
- 27. [Maximum mark: 5] 23M.1.AHL.TZ1.6 The side lengths, x cm, of an equilateral triangle are increasing at a rate of 4 cm s^{-1} .

[4]

[2]

Find the rate at which the area of the triangle, $A~{
m cm}^2$, is increasing when the side lengths are $5\sqrt{3}~{
m cm}$.

28. [Maximum mark: 6] 23M.1.AHL.TZ1.7
Consider
$$P(z) = 4m - mz + \frac{36}{m}z^2 - z^3$$
, where $z \in \mathbb{C}$ and $m \in \mathbb{R}^+$.
Given that $z - 3i$ is a factor of $P(z)$, find the roots of $P(z) = 0$. [6]

29. [Maximum mark: 19]23M.1.AHL.TZ1.11Consider the following diagram, which shows the plan of part of a house.

diagram not to scale

[5]



A narrow passageway with $\frac{3}{4}m$ width is perpendicular to a room of width 6m. There is a corner at point C. Points A and B are variable points on the base of the walls such that A, C and B lie on a straight line.

Let L denote the length AB in metres.

Let $lpha$ be the angle that $[{ m AB}]$ makes with the room wall, where $0 .$	•
(a) Show that $L=rac{3}{4}{ m sec}~lpha+6~{ m cosec}~lpha.$	[2]

(b.i) Find
$$\frac{\mathrm{d}L}{\mathrm{d}\alpha}$$
. [1]

(b.ii) When
$$rac{\mathrm{d}L}{\mathrm{d}lpha}=0$$
, show that $lpha=rctan~2$. [4]

(c.i) Find
$$\frac{\mathrm{d}^2 L}{\mathrm{d}\alpha^2}$$
. [3]

(c.ii) When
$$lpha=rctan~2$$
 , show that $rac{\mathrm{d}^2L}{\mathrm{d}lpha^2}=rac{45}{4}\sqrt{5}.$ [4]

(d.i) Hence, justify that
$$L$$
 is a minimum when $lpha=rctan~2.$ [1]

(d.ii) Determine this minimum value of L. [2]

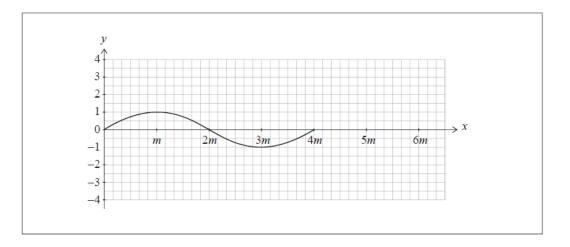
Two people need to carry a pole of length $11.25\,\mathrm{m}$ from the passageway into the room. It must be carried horizontally.

- (e) Determine whether this is possible, giving a reason for your answer.
- **30.** [Maximum mark: 6]

23M.1.AHL.TZ1.5

[2]

The function f is defined by $f(x) = \sin qx$, where q > 0. The following diagram shows part of the graph of f for $0 \le x \le 4m$, where x is in radians. There are x-intercepts at x = 0, 2m and 4m.



(a) Find an expression for m in terms of q. [2]

The function
$$g$$
 is defined by $gig(xig)=3\,\sinrac{2qx}{3}$, for $0\leq x\leq 6m$.

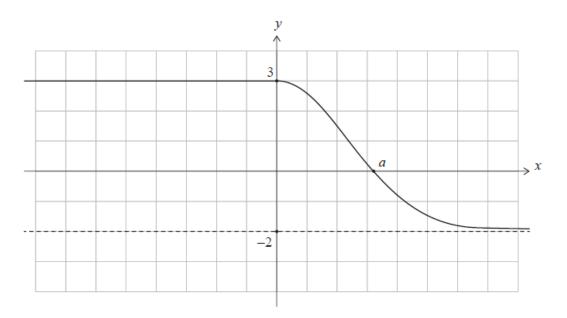
- (b) On the axes above, sketch the graph of g. [4]
- **31.** [Maximum mark: 14] 23M.1.AHL.TZ1.10 Consider the arithmetic sequence $u_1, u_2, u_3, ...$

The sum of the first n terms of this sequence is given by $S_n=n^2+4n$.

(a.i)	Find the sum of the first five terms.	[2]
(a.ii)	Given that $S_6=60$, find $u_6.$	[2]
(b)	Find u_1 .	[2]
(c)	Hence or otherwise, write an expression for u_n in terms of $n.$	[3]
Consider a geometric sequence, v_n , where $v_2=u_1$ and $v_4=u_6$.		
(d)	Find the possible values of the common ratio, $r.$	[3]

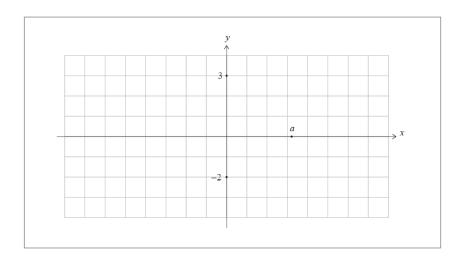
(e) Given that
$$v_{99} < 0$$
, find v_5 . [2]

32. [Maximum mark: 7] 23M.1.AHL.TZ1.8 Part of the graph of a function, f, is shown in the following diagram. The graph of y = f(x) has a y-intercept at (0, 3), an x-intercept at (a, 0) and a horizontal asymptote y = -2.



Consider the function g(x) = |f(|x|)|.

(a) On the following grid, sketch the graph of y = g(x), labelling any axis intercepts and giving the equation of the asymptote.

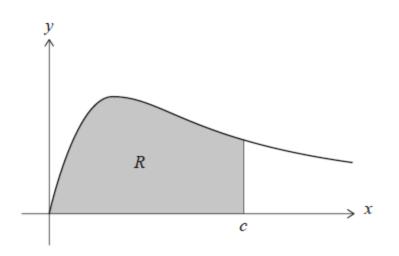


(b) Find the possible values of k such that $\left(g(x)
ight)^2=k$ has exactly two solutions.

[3]

[4]

33. [Maximum mark: 6] 23M.1.AHL.TZ2.4 The following diagram shows part of the graph of $y=rac{x}{x^2+2}$ for $x\geq 0.$



The shaded region R is bounded by the curve, the x-axis and the line x = c.

The area of R is $\ln 3$.

Find the value of *C*.

[Maximum mark: 7] 34. The functions f and g are defined by

 $f(x) = \cos x, 0 \le x \le \frac{\pi}{2}$ $g(x) = \tan x, 0 \le x < \frac{\pi}{2}.$

The curves y = f(x) and y = g(x) intersect at a point ${
m P}$ whose xcoordinate is k , where $0 < k < rac{\pi}{2}$.

(a) Show that
$$\cos^2\,k=\sin\,k$$
.

Hence, show that the tangent to the curve y=f(x) at P and (b) the tangent to the curve y=g(x) at ${
m P}$ intersect at right angles. [3]

Find the value of $\sin k$. Give your answer in the form $rac{a+\sqrt{b}}{c}$, (c) where $a,c\in\mathbb{Z}$ and $b\in\mathbb{Z}^+.$ [3]

© International Baccalaureate Organization, 2025

[6]

23M.1.AHL.TZ2.8

[1]