

Mathematics: applications and interpretation

Practice paper 1 HL markscheme

	0 50 100 150 200 250 Weights (g)	300	350	400
(c)				
	(iii) Upper quartile = 242–247 (g)		[A1 3 marks]
	(ii) Lower quartile = 135–140 (g)			A1
(b)	(i) Median = 190 (g)			A1
2. (a)	760 – 420 = 340 (g)		[(M1)A1 2 marks]
. ,	Note: Award A1A0 for one correct and one incorrect and	swer.	[Total [2 marks] 5 marks]
(b)	6 (students) Quota and convenience		[A1 3 marks] A1A1
(a)	$\frac{181}{740} \times 25 = 6.11486$			M1(A1)
1.				

Note: The **M1** is for a box and whisker plot and the **A1** for all 5 statistics in the right places.

M1A1 [2 marks] Total [7 marks]

3.68 A1A1 [2 marks]	(T = 1.517m + 3.679) $T = 1.5$	3. (a)
(M1)A1 [2 marks]	11.3 (11.2671) (°C)	(b)
e used to estimate <i>T</i> from <i>m</i> and not <i>m</i> from <i>T</i> . R1	(i) Because the line should o	(c)
no longer going up at a steady rate, or is approaching so the temperature will go t likely to continue increasing. R1 [2 marks]	 Because the temperature because we know that w down, or temperatures a 	
A1 [1 mark] Total [7 marks]	Trigonometric or sinusoidal	(d)
(A1)	Number of time periods $12 \times 5 =$ N = 60 I% = 3.1 PV = 0 PMT = 200 P/Y = 12	4. (a)
(M1)A1 [3 marks]	C/Y = 12 Value (\$)12 961.91	
	METHOD 1	(b)
(M1)A1	Real interest rate = $3.6 - 1.2 = 2$	
	METHOD 2	
(M1)	$\frac{1+0.036}{1+0.012} = 1.02371\dots$	
A1 [2 marks]	2.37% (accept 2.4%)	

EITHER (c)

N = 5	
1% = 2.4	
PV = 1 000	
PMT = 0	
(P/Y = 1)	
C/Y = 12	(M1)

OR

$$\left(1+\frac{0.024}{12}\right)^{60}$$
 (M1)

THEN

Note: Accept any answer which rounds to 1 130 and does not have more than two decimal places.

> [2 marks] Total [7 marks]

5.

		Α	В	С	D	
	A	0	0.5	0	0)
(a)	В	1	0	0.5	0.5	
	С	0	0.25	0	0.5	
	D	0	0.25	0.5	0)

(M1)A1A1

(M1)

Note: Award A1A0 if there is one error in the matrix. A0A0 for more than one error. [3 marks]

Steady state column matrix is $\begin{pmatrix} 0.2 \\ 0.4 \\ 0.2 \\ 0.2 \end{pmatrix}$

A1 [2 marks] [Total 5 marks]

(b)

Probability it is in room B is 0.4

6. Note: Accept probabilities written as percentages throughout.

(a)
$$0.27$$
 A1
[1 mark]
(b) $0.22 \times 0.28 \times 0.25 \times 0.73$ (M1)
 $= 0.0234 (0.02338336)$ A1

(c)
$$1-0.02338336$$
 (M1)
= 0.977 (0.97661664) A1

(d)
$$P(\text{rains during lunch} | \text{ rains at least once}) = \frac{P(\text{rains during lunch})}{P(\text{rains at least once})}$$
 M1A1

$$\frac{0.27}{0.97661664} = 0.276 \ (0.276464)$$

[2 marks]

7.
(a)
$$|v| = \sqrt{4.2^2 + 5.8^2 + 0.5^2}$$
 (M1)

A1 [2 marks]

(b)
$$r = \begin{pmatrix} 20 \\ -25 \\ 0 \end{pmatrix}$$

 $|r| = \sqrt{20^2 + 25^2}$ (M1)
 $= \sqrt{1025} = 32.0 (32.0156...) (km)$ A1

[2 marks]

(c) Bearing is
$$\arctan\left(\frac{4.2}{5.8}\right)$$
 or $90^{\circ} - \arctan\left(\frac{5.8}{4.2}\right)$ (M1)
035.9° (35.909...) A1

A1 [2 marks] [Total 6 marks]

Ъ

(a)	a = 3, c = 1	A1A1
	$b = \frac{2\pi}{2}$	(M1)
	$=\pi$	A1
	$f(x) = 3\cos(\pi(x-1))$	[4 marks]
(b)	Vertical stretch, scale factor 3	A1
	Horizontal stretch, scale factor $\frac{1}{\pi} \approx 0.318$	A1

Note: The vertical stretch can be at any position in the order of transformations. If the order of the final two transformations are reversed the horizontal translation is π units to the right.

[3 marks] [Total 7 marks]

9.

(a) Area
$$=\frac{1}{2} \times 110 \times 85 \times \sin 55^{\circ}$$
 (M1)(A1)
= 3830 (3829.53...) m² A1
[3 marks]

Note: units must be given for the final A1 to be awarded.

8.

A1

(b)	$BC^{2} = 110^{2} + 85^{2} - 2 \times 110 \times 85 \times \cos 55^{\circ}$	(M1)A1
	BC = 92.7 (92.731) (m)	A1

METHOD 1

Because the height and area of each triangle are equal they must have the same length base **R1**

D must be placed half-way along BC

$$BD = \frac{92.731...}{2} \approx 46.4 \text{ (m)}$$

Note: the final two marks are dependent on the **R1** being awarded.

METHOD 2

Let
$$\hat{CBA} = \theta^{\circ}$$

$$\frac{\sin\theta}{110} = \frac{\sin 55^{\circ}}{92.731...}$$
 M1

 $\Rightarrow \theta = 76.3^{\circ} (76.3354...)$

Use of area formula

$$\frac{1}{2} \times 85 \times BD \times \sin(76.33...^{\circ}) = \frac{3829.53...}{2}$$
 A1

BD = 46.4 (46.365...)(m)

A1 [6 marks] Total [9 marks]

10. (a)	(i)	$1252.7 \approx 1250$ (barrels per day)	A1
	(ii)	This is the increase (change) in <i>P</i> (production per day) between $t = 0$ and $t = 5$ (or during the first 5 days) [2 ma	A1 arks]
(b)	METI	HOD 1	
	P = 1	$1000\ln(2+t)+c$ (M1	.)A1

$$c = 20000 - 1000 \ln 2 \approx 19306.8...$$
 (M1)A1

$$P = 1000 \ln(2+t) + 19300$$

METHOD 2

$$\int_{20000}^{P} dP = \int_{0}^{t} \frac{1000}{2+x} dx$$
(M1)

$$\left[P\right]_{20000}^{P} = 1000 \left[\ln(2+x)\right]_{0}^{t}$$
 A1

Note: A1 is for the correct integral, with the correct limits.

$$P - 20000 = 1000 \left(\ln(2+t) - \ln 2 \right)$$
(M1)A1

$$P = 1000 \ln\left(\frac{2+t}{2}\right) + 20000$$
 [4 marks]

 $8847883 \approx 8850000$ (barrels) (c) A1

Total production of oil in barrels in the first year (or first 365 days) A1

Note: For the final A1 "barrels" must be present either in the statement or as the units.

Accept any value which rounds correctly to 8850000

[2 marks] Total [8 marks]

1(

11.	Odd vertices are B, F, H and I	(M1)A1
	Pairing the vertices	M1
	BF and HI $9 + 3 = 12$ BH and FI $4 + 11 = 15$ BI and FH $3 + 8 = 11$ Note: award A1 for two correct totals.	Α2
	Shortest time is 105+11=116 (minutes)	M1A1
		Total [7 marks]
12. (a)	a staight line with a negative gradient	A1A1 [2 marks]
(b)	$\log P = -2.040\log d - 0.12632 \approx -2.04\log d - 0.126$	A1A1
	Note: A1 for each correct term.	[2 marks]
(c)	(i) $n = 2$	A1
	(ii) $P = 10^{-0.126} d^{-2}$	(M1)
	$\approx 0.748 d^{-2}$	A1 [3 marks] [Total 7 marks]
13. (a)	$\dot{x} = y$	M1
	$\dot{y} = 2t - 4y^2$	A1

A1 [2 marks]

(b) $t_{n+1} = t_n + 0.1$ $x_{n+1} = x_n + 0.1y_n$ $y_{n+1} = y_n + 0.1(2t_n - 4y_n^2)$ (M1)(A1)

Note: Award **M1** for a correct attempt to substitute the functions in part (a) into the formula for Euler's method for coupled systems.

When t = 1 x = 0.202 (0.20201...) A1 $\dot{x} = 0.598 (0.59822...)$ A1 Note: Accept y = 0.598. [4 marks] Total [6 marks]

14. (a) $5.385...e^{1.1902...i} \approx 5.39e^{1.19i}$ A1A1

Note: Accept equivalent answers: $5.39e^{-5.09i}$

[2 marks]

	$\frac{2\pi}{3}$
(M1)	b) multiply by e^{3}
A1A1	-5.33-0.77i, 3.33-4.23i
[3 marks]	
Total [5 marks]	

15.

(a)
$$f'(x) = (-2ax+1) \times \frac{1}{2} \times (-ax^2 + x + a)^{-\frac{1}{2}}$$

Note: M1 is for use of the chain rule.

$$=\frac{-2ax+1}{2\sqrt{-ax^2+x+a}}$$
 M1A1
[2 marks]

(b)
$$-2ax+1=0$$
 (M1)
 $x = \frac{1}{2a}$

[2 marks]

(c) Value of local maximum =
$$\sqrt{-a \times \frac{1}{4a^2} + \frac{1}{2a} + a}$$
 M1A1

$$=\sqrt{\frac{1}{4a}+a}$$

This has a minimum value when a = 0.5

(M1)A1 [4 marks] Total [8 marks]

(M1)

M1M1

16.

(a) Let X be the number of people who arrive between 9.00 am and 9.01 am

$$X \sim Po(9)$$

 $P(X > 7) = P(X \ge 8)$ (M1)
0.676 (0.67610...) A1
[2 marks]

(b) Mean number of people arriving each 30 seconds is 4.5

Let X_1 be the number who arrive in the first 30 seconds and X_2 the number who arrive in the second 30 seconds.

P(Shunsuke will be able to get on the ride)

$$= P(X_1 \le 4) \times P(X_2 \le 3) + P(X_1 = 5) \times P(X_2 \le 2) + P(X_1 = 6) \times P(X_2 \le 1) + P(X_1 = 7) \times P(X_2 = 0)$$

Note: M1 for first term, M1 for any of the other terms

$$= 0.1821... + 0.02965... + 0.007828... + 0.0009149...$$
(A1)(A1)

Note: (A1) for one correct value, (A1)(A1) for four correct values.

= 0.221 (0.220531...) A1 [6 marks] Total [8 marks]