Definite integrals [47 marks]

1. [Maximum mark: 6]

24M.1.AHL.TZ1.6

The function f is defined as $f(x) = \sqrt{x \sin{(x^2)}}$, where $0 \leq x \leq \sqrt{\pi}$.

Consider the shaded region R enclosed by the graph of f , the x-axis and the line $x=\frac{\sqrt{\pi}}{2}$, as shown in the following diagram.

The shaded region R is rotated by 2π radians about the $\emph{x}\text{-axis}$ to form a solid.

Show that the volume of the solid is $\frac{\pi(2-\sqrt{2})}{4}$. [6]

Markscheme

METHOD 1

Note: Condone incorrect or absent limits for this M1.

$$\pi \int_0^{rac{\sqrt{\pi}}{2}} (f(x))^2 \mathrm{d}\,x$$
 $\pi \int_0^{rac{\sqrt{x}}{2}} x \sin\left(x^2
ight) \mathrm{d}\,x$ Аг

EITHER

attempt to use integration by substitution M1

$$\frac{\pi}{2} \int_0^{\frac{\pi}{4}} \sin(u) du$$

Note: Award *M1* for $u=x^2\Rightarrow rac{\mathrm{d} u}{\mathrm{d} x}=2x$

$$=\left[-rac{\pi}{2}\,\cos{(u)}
ight]_0^{rac{\pi}{4}}$$
 A1

OR

attempt to integrate by inspection (M1)

$$rac{\pi}{2} \int_0^{rac{\sqrt{\pi}}{2}} 2x \sin\left(x^2
ight) \mathrm{d}\ x$$
 or $rac{\pi}{2} \int_0^{rac{\sqrt{\pi}}{2}} \sin\left(x^2
ight) \mathrm{d}\ (x^2)$ $= \left[-rac{\pi}{2} \cos\left(x^2
ight)
ight]_0^{rac{\sqrt{\pi}}{2}}$ A1

Note: Condone incorrect or absent limits for M1.

The correct limits may be seen or implied by later work for the A1.

THEN

$$= \left(-\frac{\pi}{2}\cos\left(\frac{\pi}{4}\right)\right) - \left(-\frac{\pi}{2}\cos\left(0\right)\right) \text{ (or equivalent)} \qquad \textit{(A1)}$$

$$= -\frac{\pi}{2\sqrt{2}} + \frac{\pi}{2} \quad \text{OR} \quad -\frac{\pi\sqrt{2}}{4} + \frac{\pi}{2} \quad \text{OR} \quad \frac{\pi}{2}\left(-\frac{1}{\sqrt{2}} + 1\right) \quad \text{OR}$$

$$\frac{\pi}{2}\left(-\frac{\sqrt{2}}{2} + 1\right) \qquad \textit{A1}$$

$$= \frac{\pi\left(2-\sqrt{2}\right)}{4} \qquad \textit{AG}$$

METHOD 2

attempt to find an integral involving π and the square of f(x)

Note: Condone incorrect or absent limits for this *M1*.

$$\pi \int_0^{rac{\sqrt{\pi}}{2}} \left(f(x)
ight)^2 \mathrm{d}\ x$$
 $\pi \int_0^{rac{\sqrt{\pi}}{2}} x \sin\left(x^2
ight) \mathrm{d}\ x$ A1

attempt to use integration by substitution M1

$$u = \cos\left(x^2\right) \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -2x\sin\left(x^2\right)$$

Note: Award *M1* for $u=\cos\left(x^2\right)$

$$=-rac{\pi}{2}\int_{-rac{1}{\sqrt{2}}}^{-1}\mathrm{d}\;u$$
 $=\left[-rac{\pi}{2}u
ight]_{-rac{1}{\sqrt{2}}}^{-1}$ (or equivalent) ATAT

Note: Condone incorrect or absent limits for M1.

A1 for $-\frac{\pi}{2}u$ and **A1** for both correct limits.

$$= \frac{\pi}{2} - \frac{\pi}{2\sqrt{2}} \;\; \text{OR} \;\; \frac{\pi}{2} - \frac{\pi\sqrt{2}}{4} \;\; \text{OR} \;\; \frac{\pi}{2} \left(1 - \frac{1}{\sqrt{2}}\right) \;\; \text{OR} \;\; \frac{\pi}{2} \left(1 - \frac{\sqrt{2}}{2}\right)$$

$$=rac{\pi\left(2-\sqrt{2}
ight)}{4}$$
 AG

[6 marks]

2. [Maximum mark: 7]

23M.1.AHL.TZ1.9

The function
$$f$$
 is defined by $f\Big(y\Big) = \sqrt{r^2 - y^2}$ for $-r \leq y \leq r$

.

The region enclosed by the graph of x=f(y) and the y-axis is rotated by $360\,^\circ$ about the y-axis to form a solid sphere. The sphere is drilled through along the y-axis, creating a cylindrical hole. The resulting spherical ring has height, h.

This information is shown in the following diagrams.

diagram not to scale

The spherical ring has a volume of π cubic units. Find the value of h.

Markscheme

METHOD 1 (subtracting volumes)

radius of cylinder, R is $\sqrt{r^2-rac{h^2}{4}}$ OR $R^2=r^2-rac{h^2}{4}$ (seen anywhere) (A1)

correct limits 0 and $\frac{h}{2}$ OR $-\frac{h}{2}$ and $\frac{h}{2}$ (seen anywhere) (A1)

EITHER

volume of part sphere $=\pi\int ig(r^2-y^2ig)\mathrm{d}y$

correct integration A1

$$r^2y-rac{y^3}{3}$$

attempt to substitute their limits into their integrated expression (M1)

$$\frac{r^2h}{2} - \frac{h^3}{24}$$

[7]

recognition that the volume of the ring is $\pi \int (r^2-y^2) \mathrm{d}y - \pi R^2 h$ where $R \neq r$ (M1)

$$\pi\int\!\!\left(r^2-y^2
ight)\!\mathrm{d}y-\pi\!\left(r^2-rac{h^2}{4}
ight)\!h$$
 (or equivalent)

correct equation (A1)

$$2\pi\Big(rac{r^2h}{2}-rac{h^3}{24}\Big)-\pi r^2h+rac{\pi h^3}{4}=\pi$$
 OR $rac{h^3}{4}-rac{h^3}{12}=1$ (or equivalent)

OR

recognition that the volume of the ring is

$$\pi\int\Bigl(\Bigl(r^2-y^2\Bigr)-\Bigl(r^2-rac{h^2}{4}\Bigr)\Bigr)\mathrm{d}y$$
 (or equivalent) (M1)

correct integration A1

$$\frac{h^2}{4}y - \frac{y^3}{3}$$

attempt to substitute their limits into their integrated expression (M1)

$$\frac{h^3}{8} - \frac{h^3}{24}$$

correct equation (A1)

$$2\pi \Big(rac{h^3}{8}-rac{h^3}{24}\Big)=\pi$$
 OR $2\Big(rac{h^3}{8}-rac{h^3}{24}\Big)=1$ (or equivalent)

THEN

$$h^3 = \sqrt[3]{6}$$
 A1

METHOD 2 (volume of cylindrical hole)

radius of cylinder,
$$R$$
 is $\sqrt{r^2-rac{h^2}{4}}$ OR $R^2=r^2-rac{h^2}{4}$ (seen anywhere) (A1)

correct limits $\frac{h}{2}$ and r (seen anywhere) (A1)

volume of part sphere $=\pi\int (r^2-y^2)\mathrm{d}y$

correct integration A1

$$r^2y-rac{y^3}{3}$$

attempt to substitute their limits into their integrated expression (M1)

$$\frac{2r^3}{3} - \frac{r^2h}{2} + \frac{h^3}{24}$$

recognition that the volume of the cylindrical hole is

$$\pi \int \! ig(r^2 - y^2ig) \mathrm{d}y + \pi R^2 h$$
 where $R
eq r$ (M1)

$$\pi\int\!\left(r^2-y^2
ight)\!\mathrm{d}y+\pi\!\left(r^2-rac{h^2}{4}
ight)\!h\left(=rac{4}{3}\pi r^3-\pi
ight)$$
 (or equivalent)

correct equation (A1)

$$2\pi\Big(rac{2r^3}{3}-rac{r^2h}{2}+rac{h^3}{24}\Big)+\pi r^2h-rac{\pi h^3}{4}=rac{4}{3}\pi r^3-\pi$$
 OR $rac{h^3}{12}-rac{h^3}{4}=-1$ (or equivalent)

$$h=\sqrt[3]{6}$$
 A1

METHOD 3 (shells)

radius of cylinder, R is $\sqrt{r^2-rac{h^2}{4}}$ OR $R^2=r^2-rac{h^2}{4}$ (seen anywhere) (A1)

attempt to use shells method (M1)

$$2\pi \int x\sqrt{r^2 - x^2} \mathrm{d}x$$

correct limits r and $\sqrt{r^2-rac{h^2}{4}}$ (seen anywhere) (A1)

correct integration A1

$$-rac{1}{3}ig(r^2-x^2ig)^{rac{3}{2}}$$

attempt to substitute their limits into their integrated expression (M1)

$$-rac{1}{3}igg(0-ig(r^2-ig(r^2-rac{h^2}{4}ig)ig)^rac{3}{2}igg)$$

correct equation (A1)

$$2 imes rac{-2\pi}{3}igg(0-\Big(r^2-\Big(r^2-rac{h^2}{4}\Big)\Big)^rac{3}{2}igg)=\pi$$
 or $2\Big(rac{2\pi}{3} imesrac{h^3}{8}\Big)=\pi$

$$h=\sqrt[3]{6}$$
 A1

[7 marks]

3. [Maximum mark: 5]

Find the value of $\int_1^9 \left(\frac{3\sqrt{x}-5}{\sqrt{x}} \right) dx$.

22M.1.AHL.TZ1.1

[5]

Markscheme

$$\int rac{3\sqrt{x}-5}{\sqrt{x}} \; \mathrm{d}\; x = \int \! \left(3-5x^{-rac{1}{2}}
ight) \, \mathrm{d}\; x$$
 (A1)

$$\int rac{3\sqrt{x}-5}{\sqrt{x}} \mathrm{~d}~x = 3x-10x^{rac{1}{2}}(+c)$$
 atat

substituting limits into their integrated function and subtracting (M1)

$$3(9)-10(9)^{\frac{1}{2}}-\left(3(1)-10(1)^{\frac{1}{2}}
ight)$$
 or $27-10\times 3-(3-10)$ = 4

[5 marks]

4. [Maximum mark: 6]

22M.1.AHL.TZ2.7

By using the substitution $u=\sec x$ or otherwise, find an expression

for $\int\limits_0^{\frac{\pi}{3}}\sec^nx\,\tan\,x\,\,\mathrm{d}\,\,x$ in terms of n, where n is a non-zero real number.

[6]

Markscheme

METHOD 1

$$u = \sec x \Rightarrow d \ u = \sec x \tan x \ d \ x$$
 (A1)

attempts to express the integral in terms of u \qquad $\it M1$ \qquad

Note: Condone the absence of or incorrect limits up to this point.

$$=rac{2^n-1^n}{n}$$
 M1

$$=\frac{2^n-1}{n}$$
 A1

Note: Award *M1* for correct substitution of <u>their</u> limits for u into their antiderivative for u (or given limits for x into their antiderivative for x).

METHOD 2

 $\int \sec^n x \, \tan x \, \mathrm{d} \, x = \int \sec^{n-1} x \sec x \, \tan x \, \mathrm{d} \, x$ (A1) applies integration by inspection (M1)

$$=rac{1}{n}[\sec^nx]_0^{rac{\pi}{3}}$$
 A2

Note: Award A2 if the limits are not stated.

$$=rac{1}{n}\Bigl(\sec^nrac{\pi}{3}-\sec^n0\Bigr)$$
 M1

Note: Award *M1* for correct substitution into their antiderivative.

$$=\frac{2^n-1}{n}$$
 A1

[6 marks]

5. [Maximum mark: 6]

19N.1.AHL.TZ0.H 2

Given that $\int_0^{\ln k} \mathrm{e}^{2x} \mathrm{d}x = 12$, find the value of k.

[6]

Markscheme

$$\frac{1}{2}e^{2x}$$
 seen (A1)

attempt at using limits in an integrated expression

$$\left(\left[\frac{1}{2}e^{2x}\right]_0^{\ln k} = \frac{1}{2}e^{2\ln k} - \frac{1}{2}e^0\right)$$
 (M1)

$$=rac{1}{2}{
m e}^{\ln k^2}-rac{1}{2}{
m e}^0$$
 (A1)

Setting their equation =12 $\,$ M1

Note: their equation must be an integrated expression with limits substituted.

$$rac{1}{2}k^2 - rac{1}{2} = 12$$
 A1

$$ig(k^2=25\Rightarrowig)k=5$$
 A1

Note: Do not award final **A1** for $k=\pm 5$.

[6 marks]

6. [Maximum mark: 17]

19M.1.AHL.TZ2.H_9

Consider the functions f and g defined on the domain $0 < x < 2\pi$ by $f\left(x\right) = 3\cos 2x$ and $g\left(x\right) = 4 - 11\cos x$.

The following diagram shows the graphs of $y=f\left(x
ight)$ and $y=g\left(x
ight)$

(a) Find the x-coordinates of the points of intersection of the two graphs.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$3\cos 2x = 4 - 11\cos x$$

attempt to form a quadratic in $\cos x$ M1

$$3(2\cos^2 x - 1) = 4 - 11\cos x$$
 A1

$$\left(6\cos^2x + 11\cos x - 7 = 0\right)$$

valid attempt to solve their quadratic M1

$$(3\cos x + 7)(2\cos x - 1) = 0$$

$$\cos x = rac{1}{2}$$
 A1

$$x=rac{\pi}{3}, rac{5\pi}{3}$$
 A1A1

Note: Ignore any "extra" solutions.

[6 marks]

[6]

(b) Find the exact area of the shaded region, giving your answer in the form $p\pi+q\sqrt{3}$, where $p,q\in\mathbb{Q}$.

[5]

Markscheme

consider (±)
$$\int\limits_{rac{\pi}{3}}^{rac{5\pi}{3}} \left(4-11\cos x-3\cos 2x
ight) \mathrm{d}x$$
 M1

$$=(\pm)igl[4x-11\sin x-rac{3}{2}\sin 2xigr]^{rac{5\pi}{3}}_{rac{\pi}{3}}$$
 A1

Note: Ignore lack of or incorrect limits at this stage.

attempt to substitute their limits into their integral M1

$$= \frac{20\pi}{3} - 11\sin\frac{5\pi}{3} - \frac{3}{2}\sin\frac{10\pi}{3} - \left(\frac{4\pi}{3} - 11\sin\frac{\pi}{3} - \frac{3}{2}\sin\frac{2\pi}{3}\right)$$

$$= \frac{16\pi}{3} + \frac{11\sqrt{3}}{2} + \frac{3\sqrt{3}}{4} + \frac{11\sqrt{3}}{2} + \frac{3\sqrt{3}}{4}$$

$$= rac{16\pi}{3} + rac{25\sqrt{3}}{2}$$
 A1A1

[5 marks]

(c) At the points A and B on the diagram, the gradients of the two graphs are equal.

Determine the y-coordinate of A on the graph of g.

[6]

Markscheme

attempt to differentiate both functions and equate M1

$$-6\sin 2x = 11\sin x$$
 A1

attempt to solve for x $\it M1$

$$11\sin x + 12\sin x\cos x = 0$$

$$\sin x \left(11+12\cos x
ight)=0$$
 $\cos x=-rac{11}{12}\left(\cos x=0
ight)$ A1 $\Rightarrow y=4-11\left(-rac{11}{12}
ight)$ M1 $y=rac{169}{12}\left(=14rac{1}{12}
ight)$ A1 [6 marks]

© International Baccalaureate Organization, 2025